Modular C
Platform features used by module C◼real◼is

Some features are recovered or pre-computed specifically for the target platform by looking into the C include files: More...

+ Collaboration diagram for Platform features used by module C◼real◼is:

Macros

#define C◼real◼is◼finite(x)   __builtin_isfinite (x)
 This copies platform define isfinite. More...
 
#define C◼real◼is◼inf(x)   __builtin_isinf_sign (x)
 This copies platform define isinf. More...
 
#define C◼real◼is◼nan(x)   __builtin_isnan (x)
 This copies platform define isnan. More...
 
#define C◼real◼is◼normal(x)   __builtin_isnormal (x)
 This copies platform define isnormal. More...
 
#define C◼real◼is◼negative(x)   (sizeof (x) ≡ sizeof (float) ? __builtin_signbitf (x) : sizeof (x) ≡ sizeof (double) ? __builtin_signbit (x) : __builtin_signbitl (x))
 This copies platform define signbit. More...
 
#define C◼real◼is◼greater(x, y)   __builtin_isgreater(x, y)
 This copies platform define isgreater. More...
 
#define C◼real◼is◼greaterequal(x, y)   __builtin_isgreaterequal(x, y)
 This copies platform define isgreaterequal. More...
 
#define C◼real◼is◼less(x, y)   __builtin_isless(x, y)
 This copies platform define isless. More...
 
#define C◼real◼is◼lessequal(x, y)   __builtin_islessequal(x, y)
 This copies platform define islessequal. More...
 
#define C◼real◼is◼lessgreater(x, y)   __builtin_islessgreater(x, y)
 This copies platform define islessgreater. More...
 
#define C◼real◼is◼unordered(u, v)   __builtin_isunordered(u, v)
 This copies platform define isunordered. More...
 

Detailed Description

Some features are recovered or pre-computed specifically for the target platform by looking into the C include files:

Macro Definition Documentation

§ C◼real◼is◼finite

#define C◼real◼is◼finite (   x)    __builtin_isfinite (x)

This copies platform define isfinite.

§ C◼real◼is◼greater

#define C◼real◼is◼greater (   x,
 
)    __builtin_isgreater(x, y)

This copies platform define isgreater.

§ C◼real◼is◼greaterequal

#define C◼real◼is◼greaterequal (   x,
 
)    __builtin_isgreaterequal(x, y)

This copies platform define isgreaterequal.

§ C◼real◼is◼inf

#define C◼real◼is◼inf (   x)    __builtin_isinf_sign (x)

This copies platform define isinf.

§ C◼real◼is◼less

#define C◼real◼is◼less (   x,
 
)    __builtin_isless(x, y)

This copies platform define isless.

§ C◼real◼is◼lessequal

#define C◼real◼is◼lessequal (   x,
 
)    __builtin_islessequal(x, y)

This copies platform define islessequal.

§ C◼real◼is◼lessgreater

#define C◼real◼is◼lessgreater (   x,
 
)    __builtin_islessgreater(x, y)

This copies platform define islessgreater.

§ C◼real◼is◼nan

#define C◼real◼is◼nan (   x)    __builtin_isnan (x)

This copies platform define isnan.

§ C◼real◼is◼negative

#define C◼real◼is◼negative (   x)    (sizeof (x) ≡ sizeof (float) ? __builtin_signbitf (x) : sizeof (x) ≡ sizeof (double) ? __builtin_signbit (x) : __builtin_signbitl (x))

This copies platform define signbit.

§ C◼real◼is◼normal

#define C◼real◼is◼normal (   x)    __builtin_isnormal (x)

This copies platform define isnormal.

§ C◼real◼is◼unordered

#define C◼real◼is◼unordered (   u,
 
)    __builtin_isunordered(u, v)

This copies platform define isunordered.